首页> 外文OA文献 >Affine differential geometry analysis of human arm movements
【2h】

Affine differential geometry analysis of human arm movements

机译:人体手臂仿射微分几何分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production.
机译:人类通过感觉信息和动作来与周围环境互动。这些交互可以通过感知和动作的基本几何结构来理解。虽然默认情况下通常将运动空间视为欧几里得,但持续的行为观察指向不同的基础几何结构。这些观察到的规律性包括将路径曲率与速度联系起来的“三分之二幂定律”,以及规定运动时间与其范围之间关系的“局部等时性”。从这些经验观察开始,我们已经开发了一种基于微分几何,李群理论和Cartan移动框架方法的数学框架,用于分析人类手部轨迹。我们还使用这种方法来识别可能的运动原语,即从其构造更复杂运动的基本构造块。我们证明了连续重复的手轨迹的自然几何描述不是欧几里得而是等亲。具体来说,等仿射速度沿运动线段是分段恒定的,并且给定线段的运动执行时间与它的等仿射弧长成正比。然后,使用该数学框架,分析实验记录的绘图运动。为了检查运动的分割和分类,为记录的运动计算了两个基本的仿射仿射微分不变量-仿射仿射弧长和曲率。我们还将讨论圆锥形截面(即具有恒定等价仿射曲率的曲线)作为运动图元的可能作用,并更详细地关注等价仿射测地线抛物线。最后,我们通过证明等价仿射框架与简单的速度动力学假设相结合,证明了仿射仿射框架与手速度向量的总体编码模型兼容,从而探索了运动指令内部神经编码的可能方案。然后,我们讨论关于仿射度量在运动感知和产生的内部表示中可能扮演的角色的几种替代解释。

著录项

  • 作者

    Flash, Tamar; Handzel, Amir A.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号